284457 Steiner Triple Systems of Order 19 Contain a Subsystem of Order 9

By D. R. Stinson and E. Seah

Abstract

In this paper, we enumerate the (nonisomorphic) Steiner triple systems of order 19 which contain a subsystem of order 9 . The number of these designs is precisely 284457 . We also determine which of these designs also contain at least one subsystem of order 7, and how many. Exactly 13529 of them contain at least one subsystem of order 7.

1. Introduction. A Steiner triple system is a pair (X, \mathbf{B}), where X is a finite set of elements called points, and \mathbf{B} is a set of three-subsets of X called blocks, such that every pair of points occurs in a unique block. We denote a Steiner triple system having v points by $\operatorname{STS}(v) ; v$ is called the order of the $\operatorname{STS}(v)$. It is well-known that an $\operatorname{STS}(v)$ exists if and only if $v \geqslant 1, v \equiv 1$ or $3(\bmod 6)$.

Two $\operatorname{STS}(v)$, say $\left(X_{1}, \mathbf{B}_{1}\right)$ and $\left(X_{2}, \mathbf{B}_{2}\right)$, are said to be isomorphic if there exists a bijection $\pi: X_{1} \rightarrow X_{2}$ such that $\{x, y, z\} \in \mathbf{B}$ implies $\{\pi(x), \pi(y), \pi(z)\} \in \mathbf{B}_{2}$. We denote by $N(v)$ the number of mutually nonisomorphic $\operatorname{STS}(v) . N(v)$ has been enumerated for $v \leqslant 15$; we have $N(1)=N(3)=N(7)=N(9)=1, N(13)=2$, and $N(15)=80$. (See Mathon, Phelps, and Rosa [4] for a comprehensive investigation of these designs). At this point, an explosion occurs: it is known [5] that $N(19)>$ 2300000. The number $N(19)$ is probably too large to ever be calculated exactly, so several researchers have investigated certain special classes of STS(19). Some of these are mentioned in [4].

We enumerate certain classes of $\operatorname{STS}(19)$ in this paper. First, we have to define some terminology. We say that (Y, \mathbf{B}) is a subsystem of an $\operatorname{STS}(X, \mathbf{A})$ provided Y is contained in X and \mathbf{B} is contained in \mathbf{A}. The subsystem will be an $\operatorname{STS}(w)$ for some w. We say that it is a $\operatorname{sub}-\operatorname{STS}(w)$ to indicate that it is a subsystem of another STS.

The problem we investigate is the enumeration of (nonisomorphic) STS(19) which contain sub-STS(9). We denote the number of these designs by $N_{9}(19)$. The best previous bounds on $N_{9}(19)$ were due to Déherder [1]: he proved that $284399 \leqslant$ $N_{9}(19) \leqslant 290000$. In this paper, we prove that $N_{9}(19)=284457$. We also determine

[^0]which of these designs also contain sub-STS(7), and how many. The results are summarized in Table 1.

Table 1
STS(19) which contain a sub-STS(9)

\# sub-STS(7)	\# nonisomorphic STS(19)
0	270928
1	12800
2	641
3	45
4	37
6	5
12	1
	284457

2. $\operatorname{STS}(19)$ and One-Factorizations. It is an easy exercise to show that if an $\operatorname{STS}(v)$ contains a $\operatorname{sub}-\operatorname{STS}(w)$, then $v \geqslant 2 w+1$. Also, if $v=2 w+1$, then there is at most one sub-STS (w) contained in an $\operatorname{STS}(v)$.

An $\operatorname{STS}(2 w+1)$ which contains a sub- $\operatorname{STS}(w)$ has a very special structure. First, some definitions are required. Let X be a set of n points (where n is even). A one-factor (of X) is a set of $n / 2$ unordered pairs that partition X. A one-factorization (of X) is a pair (X, \mathbf{P}), where \mathbf{P} is a set of $n-1$ one-factors of X, such that every pair of points is contained in one one-factor of \mathbf{P}. Also, two one-factorizations (X_{1}, \mathbf{P}_{1}) and (X_{2}, \mathbf{P}_{2}) are said to be isomorphic if there exists a bijection $\pi: X_{1} \rightarrow X_{2}$ such that $\{\{\pi(x), \pi(y)\}:\{x, y\} \in P\} \in \mathbf{P}_{2}$ for all $P \in \mathbf{P}_{1}$.

Suppose (X, \mathbf{A}) is an $\operatorname{STS}(2 w+1)$ which contains a $\operatorname{sub}-\operatorname{STS}(w),(Y, \mathbf{B})$. For $y \in Y$, define $P_{y}=\{\{a, b\}:\{a, b, y\} \in \mathbf{A}\}$. Then, it is easy to see that $\left(X \backslash Y,\left\{P_{y}\right.\right.$: $y \in Y\}$) is a one-factorization of $X \backslash Y$. Conversely, if we are given a one-factorization ($X \backslash Y, \mathbf{P}$) and an $\operatorname{STS}(Y, \mathbf{B})$ where $|X|=2 \times|Y|+1$, then we can construct an STS (X, \mathbf{A}) as follows: let $\pi: \mathbf{P} \rightarrow Y$ be any bijection, and define $\mathbf{A}=\mathbf{B} \cup$ $\{\{a, b, y\}:\{a, b\} \in P \in \mathbf{P}$ and $y=\pi(P)\}$.

So, any $\operatorname{STS}(19)$ containing a sub-STS(9) can be constructed as above from a one-factorization on ten points and an STS(9). These ingredients have been enumerated. First, it is well-known that there is a unique $\operatorname{STS}(9)$ up to isomorphism, namely the affine plane of order 3. The nonisomorphic one-factorizations on 10 points were enumerated by Gelling [2]; there are 396 of them.

Suppose \mathbf{F} is a one-factorization on points $0,1, \ldots, 9$, and label the one-factors P_{i}, $1 \leqslant i \leqslant 9$, where $\{0, i\} \in P_{i}, 1 \leqslant i \leqslant 9$. Let \mathbf{S} be any $\operatorname{STS}(9)$ on point set $\left\{i^{\prime}\right.$: $1 \leqslant i \leqslant 9\}$. Since we are interested only in nonisomorphic STS(19), we can take the bijection π to be $\pi\left(P_{i}\right)=i^{\prime}, 1 \leqslant i \leqslant 9$. We denote the resulting $\operatorname{STS}(19)$ by $\mathbf{F}+\mathbf{S}$.

If we choose one \mathbf{F} from each isomorphism class, and all possible distinct \mathbf{S}, we will construct all possible nonisomorphic STS(19) which contain a sub-STS(9). Hence, we can easily obtain an upper bound on $N_{9}(19)$. It is well-known that the unique $\operatorname{STS}(9)$ has an automorphism group of order 432; hence there are $9!/ 432=$ 840 distinct $\operatorname{STS}(9)$ on a specified point set. So, we have $N_{9}(19) \leqslant 396 \times 840=$ 332640.

Let us now consider the possibility that $\mathbf{F}+\mathbf{S}$ is isomorphic to $\mathbf{F}^{\prime}+\mathbf{S}^{\prime}$. Since an STS(19) contains at most one sub-STS(9), any isomorphism π induces an isomorphism of \mathbf{F} to \mathbf{F}^{\prime}, and of \mathbf{S} to \mathbf{S}^{\prime}. Since we chose one one-factorization from each isomorphism class, we must have $\mathbf{F}=\mathbf{F}^{\prime}$, and π induces an automorphism of \mathbf{F}.

Now, suppose we are given \mathbf{F} and an automorphism π of \mathbf{F}. For $1 \leqslant i \leqslant 9$, define $\pi^{\prime}\left(i^{\prime}\right)=j^{\prime}$, where $\pi\left(P_{i}\right)=P_{j}$. Then, $\mathbf{F}+\mathbf{S}$ is isomorphic to $\mathbf{F}+\mathbf{S}^{\pi^{\prime}}$, for any $\operatorname{STS}(9)$, \mathbf{S}. Conversely, if $\mathbf{F}+\mathbf{S}$ is isomorphic to $\mathbf{F}+\mathbf{S}^{\prime}$, then $\mathbf{F}=\mathbf{F}^{\prime}$ and $\mathbf{S}=\mathbf{S}^{\pi^{\prime}}$, where π is an automorphism of \mathbf{F}.

Suppose we fix a one-factorization \mathbf{F}. For two $\mathbf{S T S}(9) \mathbf{S}$ and \mathbf{S}^{\prime}, we can define $\mathbf{S} \approx \mathbf{S}^{\prime}$ if $\mathbf{S}^{\prime}=\mathbf{S}^{\pi^{\prime}}$ for some automorphism π of \mathbf{F}. Then \approx is an equivalence relation. The number of nonisomorphic STS $\mathbf{F}+\mathbf{S}$ is precisely the number of equivalence classes of \approx. To facilitate counting equivalence classes, we use Burnside's lemma. For any permutation π^{\prime} of $\left\{i^{\prime}: 1 \leqslant i \leqslant 9\right\}$, define fix $\left(\pi^{\prime}\right)=\mid\{\mathbf{S}$: $\left.\mathbf{S}^{\pi^{\prime}}=\mathbf{S}\right\} \mid$. Then, we have

Lemma 2.1 (BURNSIDe). For a one-factorization \mathbf{F}, the number of nonisomorphic designs $\mathbf{F}+\mathbf{S}$ is precisely $\sum_{\pi \in G} \operatorname{fix}\left(\pi^{\prime}\right) /|G|$, where $G=\operatorname{Aut}(\mathbf{F})$ is the automorphism group of \mathbf{F}.

So, for a given one-factorization \mathbf{F}, we need to first determine the automorphism group of \mathbf{F}, and then for each $\pi \in \operatorname{Aut}(\mathbf{F})$, we must calculate fix $\left(\pi^{\prime}\right)$. We now describe how to calculate the numbers fix $\left(\pi^{\prime}\right)$.

We consider the action of the symmetric group S_{9} on the symbols $i^{\prime}, 1 \leqslant i \leqslant 9$, on the set of 840 distinct $\operatorname{STS}(9)$ on these points. First, the value fix $\left(\pi^{\prime}\right)$ depends only on the cycle type (i.e., the conjugacy class in S_{9}) of π^{\prime}. We can classify the 432 automorphisms of an $\operatorname{STS}(9)$ according to their cycle types. This is done in Table 2, where we use the notation $1^{i 2^{j}} 3^{k} \cdots$ to denote i cycles of length $1, j$ cycles of length $2, k$ cycles of length 3 , etc. Any π^{\prime} having a cycle type that does not occur in $\operatorname{Aut}(\operatorname{STS}(9))$ has fix $\left(\pi^{\prime}\right)=0$. For each cycle type that does occur, we can easily count the number c of conjugates in the group S_{9}. If there are b members of S_{9} having a particular cycle type, then any π^{\prime} having this cycle type has fix $\left(\pi^{\prime}\right)=840 \times b / c$. We record this information in Table 2.

Table 2
Calculation of $\operatorname{fix}\left(\pi^{\prime}\right)$

cycle type of π^{\prime}	number in Aut(STS $(9))$	size of conjugacy class	fix $\left(\pi^{\prime}\right)$
$1^{1} 8^{1}$	108	45360	2
$3^{1} 6^{1}$	72	20160	3
$1^{1} 2^{1} 6^{1}$	72	30240	2
$1^{1} 4^{2}$	54	11340	4
3^{3}	56	2240	21
$1^{3} 3^{2}$	24	3360	6
$1^{1} 2^{4}$	9	945	8
$1^{3} 2^{3}$	36	1260	24
1^{9}	1	1	840

It is now a simple matter to enumerate the $\operatorname{STS}(19)$ containing a sub-STS(9).

Algorithm.

For each nonisomorphic one-factorization \mathbf{F} do:

1. Compute $\operatorname{Aut}(\mathbf{F})$;
2. Sum :=0;
3. for each π in $\operatorname{Aut}(\mathbf{F})$ do $\operatorname{Sum}:=\operatorname{Sum}+\operatorname{fix}\left(\pi^{\prime}\right)$;
4. Sum $:=\operatorname{Sum} /|\operatorname{Aut}(\mathbf{F})|$.
"Sum" is the number of nonisomorphic STS(19) obtained from the one-factorization \mathbf{F}.
We present the results of our enumeration in Section 3. We note that the methods we have used are very similar to Déherder [1]; the main simplification is the use of Burnside's lemma.
5. Enumeration of STS(19) Containing a Sub-STS(9). As mentioned, the 396 one-factorizations of ten points were enumerated in [2]. We used a computer to find the automorphism group of each, and the cycle type of each automorphism. We record our results in Table 3, according to the size of the automorphism groups of the one-factorizations and the number of nonisomorphic designs that result. (More detailed information is presented in Table A in the Appendix). Hence, we have

Theorem 3.1. The number of nonisomorphic STS(19) that contain a sub-STS(9) is exactly 284457.

Table 3
Enumeration of STS (19) containing sub-STS(9)

Group order	\#one-factorizations	\#nonisomorphic designs		Total
1	298	298	840	250320
2	69	40	432	
		7	424	29488
	5	22	420	
3	7	4	294	1460
		1	284	
4	6	2	224	
		2	214	1524
6	3	1	212	
8	1	1	154	
9	2	3	152	906
12	1	1	144	
16	1	1	108	324
18	1	1	98	98
40	1	1	84	168
54	1	1	61	61
432	396	1	56	56
			24	24
		19	19	

We remark that Déherder enumerated all the designs resulting from the 389 one-factorizations with automorphism groups of order at most 9 . Our results agree with his, except for one small error. From one of the one-factorizations (\#36 on Gelling's list), 144 nonisomorphic STS(19) result, and not 152, as claimed in [1]. We have adjusted the bounds claimed in the introduction downward by 8 , to correct this error.
4. Sub-STS(7) and Sub-One-Factorizations of Order 4. The second question we investigate is the enumeration of sub-STS(7) in the $284457 \operatorname{STS}(19)$ which contain a sub-STS(9). First, it is not difficult to see that, if an $\operatorname{STS}(19)$ contains both a sub-STS(9) and a sub-STS(7), then these subdesigns intersect in a block of the design. The sub-STS(7) contains four points i, j, k, l not in the sub-STS(9), and three points $m^{\prime}, n^{\prime}, p^{\prime}$, which occur in a block of the sub-STS(9). In the one-factorization $\mathbf{F},\{i, j\}$ and $\{k, l\}$ occur in a one-factor, as do $\{i, k\}$ and $\{j, l\}$, and $\{i, l\}$ and $\{j, k\}$ (these three one-factors are, in some order, P_{m}, P_{n}, and P_{p}). Such a configuration is called a sub-one-factorization of order 4 , on the four points i, j, k, l. We determined, by computer, the occurrences of sub-one-factorizations of order 4 in the 396 one-factorizations of order 10. This information is presented in Table 4.

Table 4
Sub-one-factorizations of order 4

\# sub-one-factorizations of order 4	\#one-factorizations of order 10
0	278
1	81
2	24
3	5
4	5
6	2
12	1
	396

Let \mathbf{G} be a sub-one-factorization of order 4 in \mathbf{F} (a one-factorization of order 10). Define $B(\mathbf{G})=\left\{i^{\prime}: \mathbf{G}\right.$ meets P_{i} in a one-factor $\}$. Then an $\operatorname{STS}(19), \mathbf{F}+\mathbf{S}$, has a sub-STS(7) containing the points of \mathbf{G} if and only if $B(\mathbf{G})$ is a block of \mathbf{S}.

For a one-factorization \mathbf{F}, we define $\operatorname{Conf}(\mathbf{F})=\{B(\mathbf{G})$: \mathbf{G} is a sub-one-factorization of order 4 in $\mathbf{F}\}$. We call $\operatorname{Conf}(\mathbf{F})$ the configuration induced by $\mathbf{F} . \operatorname{Conf}(\mathbf{F})$ is a set of three-subsets of $\left\{i^{\prime}: 1 \leqslant i \leqslant 9\right\}$. Also, it is not difficult to check that no pair of points can occur in more than one three-subset of a particular configuration. An $\mathbf{S T S}(19), \mathbf{F}+\mathbf{S}$, contains precisely $|\operatorname{Conf}(\mathbf{F}) \cap \mathbf{S}|$ sub-STS(7)s.

We want to count nonisomorphic STS(19). As before, we have the symmetric group S_{9} acting on the 840 distinct $\operatorname{STS}(9)$ on points $\left\{i^{\prime}: 1 \leqslant i \leqslant 9\right\}$, and $\operatorname{Aut}(\mathbf{F})$ induces an equivalence relation \approx on this set of $\operatorname{STS}(9)$. Since $|\operatorname{Conf}(\mathbf{F}) \cap \mathbf{S}|$ is constant within equivalence classes, we could choose one STS(9) from each equivalence class, and determine $|\operatorname{Conf}(\mathbf{F}) \cap \mathbf{S}|$ to count the sub-STS(7)s. But again, we can use Burnside's lemma to avoid counting the equivalence classes.

For a configuration $C=\operatorname{Conf}(\mathbf{F})$, an automorphism π in $G=\operatorname{Aut}(\mathbf{F})$, and an integer i such that $0 \leqslant i \leqslant|C|$, define fix (C, i, π) to be the number of $\operatorname{STS}(9) \mathbf{S}$ such
that:
(1) $|C \cap \mathbf{S}|=i$, and
(2) S is fixed by π.

Then, the number of nonisomorphic $\operatorname{STS}(19) \mathbf{F}+\mathbf{S}$ which contain exactly i sub$\operatorname{STS}(7)$ is precisely $\Sigma_{\pi \in G} \mathrm{fix}(C, i, \pi) /|G|$.

So, we can do our enumeration, provided we can find the relevant numbers fix (C, i, π). In general, these quantities depend on the cycle type of π, and the structure of C. Note that we must have $C^{\pi}=C$, since $\pi \in \operatorname{Aut}(\mathbf{F})$. Hence, there are usually not too many possibilities to consider. We pursue this in the next section.
5. Enumeration of Sub-STS(7). First, we observe that the 278 one-factorizations with no sub-one-factorizations of order 4 cannot give rise to any $\operatorname{STS}(19)$ with a sub-STS(7). So, we begin with the 81 one-factorizations \mathbf{F} that contain a unique sub-one-factorization of order 4 . Each such \mathbf{F} has $\operatorname{Conf}(\mathbf{F})$ consisting of one block of size three.

So, we first want to determine the numbers fix $\left(\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}, i, \pi\right)$, where π has one of the 9 cycle types in Table 2 (i.e., π is an automorphism of some $\operatorname{STS}(9)$), π fixes $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$, and $i=0,1$. These numbers are not too difficult to calculate. For example, consider the cycle type $3^{1} 6^{1}$, and suppose $\pi=(123)(456789)$. Then we must have $\{a, b, c\}=\{1,2,3\}$. From Table 2, we see that there are three STS(9)s which are fixed by π, and it is easy to check that all three contain the block $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}\right\}$. Hence, fix $\left(\left\{1^{\prime}, 2^{\prime}, 3^{\prime}\right\}, 1, \pi\right)=3$ and $\operatorname{fix}\left(\left\{1^{\prime}, 2^{\prime}, 3^{\prime}\right\}, 0, \pi\right)=0$.

The remaining fix numbers can be calculated without difficulty. We present them in Table 5. For each cycle type, we give a particular π with that cycle type. We then list all possible blocks B that could be fixed by π, and the fix numbers for each. For convenience, we will henceforth omit the prime (') markings when discussing configurations.

Table 5
Fix numbers for configurations having one block

Cycle type	π	B	$\operatorname{fix}(B, 1, \pi)$	fix $(B, 0, \pi)$
$1^{1} 8^{1}$	$(1)(23456789)$	none		
$3^{1} 6^{1}$	$(123)(456789)$	$\{1,2,3\}$	3	0
$1^{1} 2^{1} 6^{1}$	$(1)(23)(456789)$	$\{1,2,3\}$	2	0
$1^{1} 4^{2}$	$(1)(2345)(6789)$	none		
3^{3}	$(123)(456)(789)$	$\{1,2,3\}$	3	18
		$\{4,5,6\}$	3	18
		$\{7,8,9\}$	3	18
$1^{3} 3^{2}$	$(1)(2)(3)(456)(789)$	$\{1,2,3\}$	6	0
		$\{4,5,6\}$	6	0
		$\{7,8,9\}$	6	0
$1^{1} 2^{4}$	$(1)(23)(45)(67)(89)$	$\{1,2,3\}$	8	0
		$\{1,4,5\}$	8	0
		$\{1,6,7\}$	8	0
		$\{1,8,9\}$	8	0
$1^{3} 2^{3}$	$(1)(2)(3)(45)(67)(89)$	$\{1,2,3\}$	24	0
		$\{1,4,5\}$, etc.	8	16
1^{9}	$(1)(2)(3)(4)(5)(6)(7)(8)(9)$	$\{1,2,3\}$, etc.	120	720

Of the 81 one-factorizations which contain a unique sub-one-factorization of order 4, 68 have trivial automorphism groups, and hence each of these gives rise to 120 STS(19) which contain a sub-STS(7), for a total of $68 \times 120=8160$. Ten of the remaining 13 one-factorizations have groups of order $2 ; 8$ of these produce 72 designs (each) with subdesigns of order 7 , and the remaining 2 each yield 64 . The 3 remaining one-factorizations have groups of order 6 , and each contribute 26 of these designs. So the 13 one-factorizations with nontrivial automorphism groups produce a total of $8 \times 72+2 \times 64+3 \times 26=782$ STS(19) containing a sub-STS(7). (For details, see Tables B and C in the Appendix). So, we have

Theorem 5.1. The 81 one-factorizations which contain precisely one sub-one-factorization of order 4 produce exactly 8942 STS(19) which contain a sub-STS(9) and a sub-STS(7).

We now consider the 24 one-factorizations of order 10 that contain exactly two sub-one-factorizations of order 4. First, we remark that these all have configurations isomorphic to $\{\{a, b, c\},\{a, d, e\}\}$. This is because any configuration which contains two nonintersecting blocks must in fact contain a third block disjoint from the first two.

Examining the automorphisms which occur, we find that there are only four nonisomorphic possibilities. These are summarized in Table 6.

Table 6
Fix numbers for configurations having two blocks

Cycle type	π	representative configuration	fix numbers
$1^{3} 2^{3}$	$(1)(2)(3)(45)(67)(89)$	$\{\{1,2,3\},\{1,4,5\}\},$ etc.	$\begin{aligned} & \operatorname{fix}(C, 2, \pi)=8 \\ & \operatorname{fix}(C, 1, \pi)=16 \\ & \operatorname{fix}(C, 0, \pi)=0 \end{aligned}$
		$\{\{1,4,6\},\{1,5,7\}\}$ etc.	$\operatorname{fix}(C, 2, \pi)=4$ $\operatorname{fix}(C, 1, \pi)=0$ $\operatorname{fix}(C, 0, \pi)=20$
$1^{1} 2^{4}$	$(1)(23)(45)(67)(89)$	$\{\{1,2,3\},\{1,4,5\}\}$ etc.	$\begin{aligned} & \operatorname{fix}(C, 2, \pi)=8 \\ & \operatorname{fix}(C, 1, \pi)=0 \\ & \operatorname{fix}(C, 0, \pi)=0 \end{aligned}$
1^{9}	$(1)(2)(3)(4)(5)(6)(7)(8)(9)$	$\{\{1,2,3\},\{1,4,5\}\}$ etc.	$\operatorname{fix}(C, 2, \pi)=24$ $\operatorname{fix}(C, 1, \pi)=192$ $\operatorname{fix}(C, 0, \pi)=624$

The nine automorphism-free one-factorizations which contain two sub-one-factorizations of order 4 are listed in Table B. Each of these gives rise to 24 STS(19) containing two sub-STS(7)s and 192 STS(19) containing one sub-STS(7). The remaining 15 one-factorizations have automorphism groups of order 2 or 6. The sub-STS(7)s arising from them are presented in Table C. Summarizing these, we have

Theorem 5.2. The 24 subfactorizations which contain exactly two sub-one-factorizations of order 4 give rise to 444 STS(19) which contain a sub-STS(9) and two sub-STS(7)s, and 3176 STS(19) which contain a sub-STS(9) and one sub-STS(7).

There are five one-factorizations that contain exactly three sub-one-factorizations of order 4. One of these (\#20) has a configuration consisting of three mutually intersecting three-subsets, and the other four have configurations consisting of three mutually disjoint three-subsets. The one-factorization \#20 has a trivial automorphism group. The fix numbers are easily calculated, and we obtain the results shown in Table C .

The four one-factorizations that have three disjoint three-subsets for their configurations have automorphism groups of orders $3,6,18$, and 54 . There are several fix numbers which must be calculated. These are presented in Table 7. We note that all the relevant fix numbers fix $(C, 2, \pi)=0$, since any $\operatorname{STS}(9)$ containing two specified disjoint blocks must also contain a third block disjoint from the first two. Also, we should point out that for some cycle types in Table 7, there could (conceivably) be different (nonisomorphic) ways in which the specified π intersects the configuration C. For example, if $\pi=(123)(456)(789)$, then there are two nonisomorphic possibilities for C : $\{\{1,2,3\},\{4,5,6\},\{7,8,9\}\}$ and $\{\{1,4,7\},\{2,5,8\},\{3,6,9\}\}$. Only the first of these occurs, so we do not calculate fix numbers for the second possibility.

Table 7
Fix numbers for configurations consisting of
three disjoint blocks

Cycle type	π	representative configuration	fix numbers
$3^{1} 6^{1}$	(123)(456789)	$123,468,279$ etc.	$\begin{aligned} & \operatorname{fix}(C, 3, \pi)=3 \\ & \operatorname{fix}(C, 1, \pi)=0 \\ & \operatorname{fix}(C, 0, \pi)=0 \end{aligned}$
$1^{1} 2^{1} 6^{1}$	(1)(23)(456789)	$\begin{array}{r} \text { 123,468,579, } \\ \text { etc. } \end{array}$	$\begin{aligned} & \operatorname{fix}(C, 3, \pi)=2 \\ & \operatorname{fix}(C, 1, \pi)=0 \\ & \operatorname{fix}(C, 0, \pi)=0 \end{aligned}$
3^{3}	(123)(456)(789)	$\begin{array}{r} \text { 123,456,789, } \\ \text { etc. } \end{array}$	$\begin{aligned} & \operatorname{fix}(C, 3, \pi)=3 \\ & \operatorname{fix}(C, 1, \pi)=0 \\ & \operatorname{fix}(C, 0, \pi)=18 \end{aligned}$
$1^{3} 3^{2}$	$(1)(2)(3)(456)(789)$	$\begin{array}{r} \text { 123,456,789, } \\ \text { etc. } \end{array}$	$\begin{aligned} & \operatorname{fix}(C, 3, \pi)=6 \\ & \operatorname{fix}(C, 1, \pi)=0 \\ & \operatorname{fix}(C, 0, \pi)=0 \end{aligned}$
$1^{1} 2^{4}$	$(1)(23)(45)(67)(89)$	$\begin{array}{r} 123,468,579 \\ \text { etc. } \end{array}$	$\begin{aligned} & \operatorname{fix}(C, 3, \pi)=2 \\ & \operatorname{fix}(C, 1, \pi)=6 \\ & \operatorname{fix}(C, 0, \pi)=0 \end{aligned}$
$1^{3} 2^{3}$	$(1)(2)(3)(45)(67)(89)$	$\begin{array}{r} 123,468,579 \\ \text { etc. } \end{array}$	$\begin{aligned} & \operatorname{fix}(C, 3, \pi)=6 \\ & \operatorname{fix}(C, 1, \pi)=18 \\ & \operatorname{fix}(C, 0, \pi)=0 \end{aligned}$
$1{ }^{9}$	$(1)(2)(3)(4)(5)(6)(7)(8)(9)$	$\begin{array}{r} 123,456,789 \\ \text { etc. } \end{array}$	$\operatorname{fix}(C, 3, \pi)=12$ $\operatorname{fix}(C, 1, \pi)=324$ $\operatorname{fix}(C, 0, \pi)=504$

There remain eight one-factorizations to consider. Five of these contain 4 sub-one-factorizations of order 4 , two contain 6 , and one contains 12 . The configuration of this last one-factorization is in fact an STS(9), and the automorphism group is $\operatorname{Aut}(\mathbf{S T S}(9))$. So, the determination of $|\operatorname{Conf}(\mathbf{F}) \cap \mathbf{S}|$ for various $\mathbf{S T S}(9)$, \mathbf{S}, is equivalent to counting STS(9) which intersect a fixed STS(9) (namely, $\operatorname{Conf}(\mathbf{F})$) in a
specified number of blocks, under the action of $\operatorname{Aut}(\mathrm{STS}(9))$. These numbers were calculated in [3]. We obtain the numbers in Table C.

The seven one-factorizations having configurations of size 4 or 6 were dealt with as follows. In order to minimize the possibility of error in calculating the fix numbers, we simply used the computer. For each automorphism π, we generated all 840 STS(9) and counted how many were fixed by π. For many of these, we also calculated the fix numbers by hand, and the results agreed in all cases. We obtained the results of Table C.

Summarizing the STS(19) obtained from the one-factorizations with configurations of size at least three, we have

Theorem 5.3. From the 13 one-factorizations with configurations of size at least 3 , we obtain $N_{i} \operatorname{STS}(19)$ which contain a sub-STS(9) and i sub-STS(7), where $N_{1}=682$, $N_{2}=197, N_{3}=45, N_{4}=37, N_{6}=5$, and $N_{12}=1$.

The overall distribution of sub-STS(7) in the $\operatorname{STS}(19)$ was presented in Table 1 in the Introduction. We have

Theorem 5.4. Of the 284457 nonisomorphic STS(19) which contain a sub-STS(9), exactly 13529 contain at least one sub-STS(7).

As a final remark, we note that it would be possible to determine the automorphism groups of the 284457 STS(19), using similar techniques.

Acknowledgment. We would like to thank Alex Rosa for bringing the work of Déherder to our attention, and for many useful comments and suggestions.

Appendix
Table A
One-factorizations with nontrivial automorphism groups

One-factorization number	group order	\# STS(19)	group generators (action on one-factors)
1	432	9	(1)(28653974)
			(1)(6)(7)(285)(394)
			(132)(487)(569)
2	12	84	(1)(89)(274365)
			(1)(26)(37)(45)(89)
3	6	154	$(1)(2)(3)(45)(68)(79)$
			(1)(4)(5)(297)(386)
4	2	432	$(1)(8)(9)(27)(36)(45)$
5	16	61	(1)(29473856)
			$(1)(6)(7)(24)(35)(89)$
6	2	432	$(1)(2)(3)(45)(68)(79)$
7	6	152	(132)(487569)
8	4	224	$(1)(2)(3)(49)(58)(67)$
			(3)(4)(9)(12)(56)(78)
9	4	224	$(1)(2)(3)(46)(57)(89)$
			$(2)(4)(6)(13)(59)(78)$
10	2	432	$(1)(2)(3)(45)(68)(79)$
11	18	56	(123)(497685)
			(4)(7)(8)(123)(596)

(continued)

One-factorization number	group order	\# STS(19)	group generators (action on one-factors)
12	12	84	(154)(298367)
			(1)(23)(45)(67)(89)
13	6	152	(132)(478965)
17	2	432	$(1)(4)(8)(27)(36)(59)$
18	2	432	$(1)(2)(3)(49)(58)(67)$
19	2	432	$(1)(2)(3)(45)(68)(79)$
21	2	432	$(1)(2)(3)(45)(68)(79)$
22	8	108	(1)(29385746)
23	2	432	$(1)(2)(3)(45)(68)(79)$
24	2	432	$(1)(2)(3)(45)(68)(79)$
36	6	144	(1)(23)(497586)
38	3	284	(4)(7)(8)(132)(596)
44	2	432	$(1)(8)(9)(23)(47)(56)$
49	4	212	(1)(2)(5)(6)(8)(34)(79)
			(1)(3)(4)(7)(9)(25)(68)
51	2	432	$(1)(2)(3)(45)(68)(79)$
53	2	432	$(1)(4)(9)(26)(35)(78)$
58	2	432	$(1)(2)(3)(45)(68)(79)$
61	2	432	$(1)(2)(3)(48)(59)(67)$
66	2	420	(1)(2)(3)(6)(9)(45)(78)
92	2	432	$(1)(4)(7)(29)(38)(56)$
95	2	432	$(1)(2)(3)(45)(68)(79)$
98	2	432	$(1)(2)(3)(45)(68)(79)$
100	2	432	$(1)(4)(6)(29)(38)(57)$
101	2	432	$(1)(2)(6)(39)(48)(57)$
105	2	432	$(2)(5)(7)(16)(38)(49)$
114	2	432	$(1)(3)(6)(24)(59)(78)$
125	2	420	(2)(3)(4)(6)(8)(19)(57)
132	6	152	(132)(478596)
135	2	432	$(1)(2)(3)(45)(68)(79)$
136	2	432	$(1)(2)(3)(49)(58)(67)$
147	2	420	(1)(3)(5)(7)(9)(24)(68)
148	2	432	$(1)(2)(3)(49)(58)(67)$
150	4	214	(1)(2736)(4958)
153	2	420	$(1)(2)(3)(6)(9)(45)(78)$
165	2	420	(1)(2)(5)(6)(7)(34)(89)
182	2	420	(1)(2)(5)(6)(7)(34)(89)
192	2	432	$(1)(2)(6)(39)(48)(57)$
193	2	420	(1)(2)(3)(6)(8)(45)(79)
194	2	432	$(1)(2)(8)(36)(47)(59)$
195	2	432	$(2)(3)(9)(16)(47)(58)$
199	2	420	(1)(2)(3)(7)(9)(48)(56)
201	2	420	$(1)(2)(3)(4)(6)(59)(78)$
202	2	432	$(1)(2)(7)(35)(46)(89)$
203	2	432	$(1)(2)(4)(35)(67)(89)$
204	2	432	$(1)(2)(4)(35)(67)(89)$
214	2	424	(1)(23)(45)(67)(89)
234	4	224	$(1)(2)(3)(45)(68)(79)$
			$(1)(4)(5)(23)(69)(78)$
243	2	432	$(2)(7)(9)(15)(34)(68)$
254	2	424	(8)(16)(27)(35)(49)
259	2	420	(1)(3)(4)(8)(9)(25)(67)
269	2	420	$(1)(3)(4)(8)(9)(25)(67)$
285	2	420	$(1)(2)(3)(6)(9)(45)(78)$

One-factorization number	group order	\# STS(19)	group generators (action on one-factors)
290	54	19	(186345279)
			(7)(48)(162539)
292	2	420	(1)(2)(5)(7)(8)(34)(69)
297	2	420	(2)(4)(7)(8)(9)(15)(36)
299	2	420	(1)(2)(3)(6)(7)(49)(58)
305	2	432	$(1)(3)(8)(24)(56)(79)$
315	2	432	$(1)(2)(8)(36)(47)(59)$
316	2	432	$(1)(3)(6)(24)(58)(79)$
324	2	424	(1)(23)(45)(67)(89)
328	8	108	(1)(27385946)
329	4	214	(1)(2938)(4756)
330	8	108	(1)(2938)(4756)
			(1)(4)(5)(6)(7)(23)(89)
331	2	432	$(2)(7)(9)(15)(38)(46)$
332	2	432	(3)(5)(9)(18)(24)(67)
347	2	424	(1)(23)(47)(59)(68)
355	2	420	(1)(2)(3)(6)(9)(45)(78)
360	2	432	$(2)(3)(9)(16)(45)(78)$
362	3	294	(132)(476)(589)
363	3	294	(184)(265)(397)
364	2	420	(1)(2)(3)(6)(8)(45)(79)
367	2	432	(2)(3)(9)(16)(47)(58)
374	2	432	$(1)(2)(4)(36)(59)(78)$
375	2	424	(5)(16)(28)(39)(47)
376	2	420	(1)(2)(3)(6)(9)(48)(57)
378	2	424	(1)(25)(34)(69)(78)
380	6	152	(132)(498576)
381	3	294	(172)(395)(468)
382	3	294	(182)(375)(496)
388	2	420	(2)(3)(5)(7)(9)(16)(48)
389	2	420	(1)(2)(3)(6)(8)(47)(59)
390	2	420	(4)(5)(6)(8)(9)(13)(27)
391	2	420	(1)(2)(3)(7)(9)(48)(56)
392	2	432	(2)(3)(9)(16)(45)(78)
394	2	424	(1)(23)(45)(67)(89)
395	4	212	(1)(2)(3)(6)(7)(45)(89)
			(1)(4)(5)(8)(9)(23)(67)
396	40	24	(3)(1276)(4859)
			(45)(89)(16327)

Table B
Automorphism-free one-factorizations
containing one or two sub-one-factorizations of order 4
One sub-one-factorization
$14,27,30,32,34,35,37,40,41,42,43,45,47,50,55,62,63,64,65,67,69,71,73$,
$77,81,84,87,88,94,96,99,102,103,104,106,109,113,115,117,120,122,123$,
$124,128,130,133,137,140,155,157,159,162,181,185,196,197,205,218,229$, $247,252,256,260,276,283,301,308,343$

Two sub-one-factorizations
$15,16,25,26,29,48,52,164,255$

Table C
Other one-factorizations which contain at least one
sub-one-factorization of order 4

| one-factorization
 number | Configuration | | | \#STS(19) which contain i sub-STS(7) | | | |
| :---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- |
| | | | | | | | |

Department of Computer Science
University of Manitoba
Winnipeg, Manitoba, Canada R3T 2N2

1. R. Déherder, Recouvrements, Thèse de doctorat, Université Libre de Bruxelles, 1976.
2. E. N. Gelling, On One-Factorizations of the Complete Graph and the Relationship to Round Robin Schedules, M. Sc. Thesis, University of Victoria, 1973.
3. E. S. Kramer \& D. M. Mesner, "Intersections among Steiner systems," J. Combin. Theory, v. 16, 1974, pp. 273-285.
4. R. A. Mathon, K. T. Phelps \& A. Rosa, "Small Steiner triple systems and their properties," Ars Combin., v. 15, 1983, pp. 3-110.
5. D. R. Stinson \& H. Ferch, " 2000000 Steiner triple systems of order 19," Math. Comp., v. 44, 1985, pp. 533-535.

[^0]: Received May 6, 1985.
 1980 Mathematics Subject Classification. Primary 05B05, 20 B 25.

