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284457 Steiner Triple Systems of Order 19 
Contain a Subsystem of Order 9 

By D. R. Stinson and E. Seah 

Abstract. In this paper, we enumerate the (nonisomorphic) Steiner triple systems of order 19 
which contain a subsystem of order 9. The number of these designs is precisely 284457. We 
also determine which of these designs also contain at least one subsystem of order 7, and how 
many. Exactly 13529 of them contain at least one subsystem of order 7. 

1. Introduction. A Steiner triple system is a pair (X, B), where X is a finite set of 
elements called points, and B is a set of three-subsets of X called blocks, such that 
every pair of points occurs in a unique block. We denote a Steiner triple system 
having v points by STS(v); v is called the order of the STS(v). It is well-known that 
an STS(v) exists if and only if v > 1, v 1 or 3 (mod 6). 

Two STS(v), say (X1, B1) and (X2, B2), are said to be isomorphic if there exists a 
bijection 7T: X- X2 such that {x, y, z} E B implies {(T(x), 7T(y), 7T(z)} E B2. We 
denote by N(v) the number of mutually nonisomorphic STS(v). N(v) has been 
enumerated for v < 15; we have N(1) = N(3) = N(7) = N(9) = 1, N(13) = 2, and 
N(15) = 80. (See Mathon, Phelps, and Rosa [4] for a comprehensive investigation of 
these designs). At this point, an explosion occurs: it is known [5] that N(19) > 
2300000. The number N(19) is probably too large to ever be calculated exactly, so 
several researchers have investigated certain special classes of STS(19). Some of these 
are mentioned in [4]. 

We enumerate certain classes of STS(19) in this paper. First, we have to define 
some terminology. We say that (Y, B) is a subsystem of an STS (X, A) provided Y is 
contained in X and B is contained in A. The subsystem will be an STS(w) for some 
w. We say that it is a sub-STS(w) to indicate that it is a subsystem of another STS. 

The problem we investigate is the enumeration of (nonisomorphic) STS(19) which 
contain sub-STS(9). We denote the number of these designs by N9(19). The best 
previous bounds on N9(19) were due to Deherder [1]: he proved that 284399 < 
N9(19) < 290000. In this paper, we prove that N9(19) = 284457. We also determine 
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which of these designs also contain sub-STS(7), and how many. The results are 
summarized in Table 1. 

TABLE 1 

STS(19) which contain a sub-STS(9) 

# sub-STS(7) #nonisomorphic STS(19) 

0 270928 
1 12800 
2 641 
3 45 
4 37 
6 5 

12 1 
284457 

2. STS(19) and One-Factorizations. It is an easy exercise to show that if an STS(v) 
contains a sub-STS(w), then v > 2w + 1. Also, if v = 2w + 1, then there is at most 
one sub-STS(w) contained in an STS(v). 

An STS(2w + 1) which contains a sub-STS(w) has a very special structure. First, 
some definitions are required. Let X be a set of n points (where n is even). A 
one-factor (of X) is a set of n/2 unordered pairs that partition X. A one-factoriza- 
tion (of X) is a pair (X, P), where P is a set of n - 1 one-factors of X, such that 
every pair of points is contained in one one-factor of P. Also, two one-factorizations 
(X1, P1) and (X2, P2) are said to be isomorphic if there exists a bijection V": X- X2 
such that {{'7T(x), vi(y)}: {x, y} E P} E P2 for all P E P1. 

Suppose (X, A) is an STS(2w + 1) which contains a sub-STS(w), (Y, B). For 
y E Y, define PY = (( ba, b: a, b, y} E A). Then, it is easy to see that (X\ Y, {PY: 
y E Y}) is a one-factorization of X\ Y. Conversely, if we are given a one-factoriza- 
tion (X\ Y, P) and an STS (Y, B) where IXI = 2 X IYI + 1, then we can construct 
an STS (X, A) as follows: let r: P -- Y be any bijection, and define A = B U 
{{a, b, y}: {a, b} e P e Pand y = 7T(P)I. 

So, any STS(19) containing a sub-STS(9) can be constructed as above from a 
one-factorization on ten points and an STS(9). These ingredients have been enu- 
merated. First, it is well-known that there is a unique STS(9) up to isomorphism, 
namely the affine plane of order 3. The nonisomorphic one-factorizations on 10 
points were enumerated by Gelling [2]; there are 396 of them. 

Suppose F is a one-factorization on points 0, 1, . .. , 9, and label the one-factors Pi, 
1 < i < 9, where {0,i} e PE , g1 i < 9. Let S be any STS(9) on point set {i': 
1 < i < 9). Since we are interested only in nonisomorphic STS(19), we can take the 
bijection v to be v (P1) = i', 1 < i < 9. We denote the resulting STS(l9) by F + S. 

If we choose one F from each isomorphism class, and all possible distinct S, we 
will construct all possible nonisomorphic STS(19) which contain a sub-STS(9). 
Hence, we can easily obtain an upper bound on N9(19). It is well-known that the 
unique STS(9) has an automorphism group of order 432; hence there are 9!/432 = 
840 distinct STS(9) on a specified point set. So, we have N9(19) < 396 x 840 = 
332640. 
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Let us now consider the possibility that F + S is isomorphic to F' + S'. Since an 
STS(19) contains at most one sub-STS(9), any isomorphism r induces an isomor- 
phism of F to F', and of S to S'. Since we chose one one-factorization from each 
isomorphism class, we must have F = F', and r induces an automorphism of F. 

Now, suppose we are given F and an automorphism r of F. For 1 < i < 9, define 
T'(i') = j', where '7(Pi) = Pj. Then, F + S is isomorphic to F + S', for any STS(9), 

S. Conversely, if F + S is isomorphic to F + S', then F = F' and S = S', where r 

is an automorphism of F. 
Suppose we fix a one-factorization F. For two STS(9) S and S', we can define 

S S' if S' = S ' for some automorphism r of F. Then = is an equivalence 
relation. The number of nonisomorphic STS F + S is precisely the number of 
equivalence classes of = . To facilitate counting equivalence classes, we use Burn- 
side's lemma. For any permutation r"' of {i': 1 < i < 9), define fix(')= I{S: 
S = SI 1. Then, we have 

LEMMA 2.1 (BURNSIDE). For a one-factorization F. the number of nonisomorphic 
designs F + S is precisely ec G fix(,r')/lGI, where G = Aut(F) is the automorphism 
group of F. 

So, for a given one-factorization F, we need to first determine the automorphism 
group of F, and then for each 7r E Aut(F), we must calculate fix(^'). We now 
describe how to calculate the numbers fix(^'). 

We consider the action of the symmetric group S9 on the symbols i', 1 < i < 9, on 
the set of 840 distinct STS(9) on these points. First, the value fix(^') depends only 
on the cycle type (i.e., the conjugacy class in S) of 7T'. We can classify the 432 
automorphisms of an STS(9) according to their cycle types. This is done in Table 2, 
where we use the notation 1i213k ... to denote i cycles of length 1, j cycles of 
length 2, k cycles of length 3, etc. Any r' having a cycle type that does not occur in 
Aut(STS(9)) has fix(^') = 0. For each cycle type that does occur, we can easily count 
the number c of conjugates in the group S9. If there are b members of S9 having a 
particular cycle type, then any v' having this cycle type has fix(^') = 840 x b/c. We 
record this information in Table 2. 

TABLE 2 

Calculation of fix( T') 

cycle type of 7T' number in Aut(STS(9)) size of conjugacy class fix(^') 

1'81 108 45360 2 
3161 72 20160 3 

112161 72 30240 2 
1142 54 11340 4 

33 56 2240 21 
1332 24 3360 6 
1124 9 945 8 
1323 36 1260 24 

19 1 1 840 
432 

It is now a simple matter to enumerate the STS(19) containing a sub-STS(9). 
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ALGORITHM. 

For each nonisomorphic one-factorization F do: 
1. Compute Aut(F); 
2. Sum:= 0; 
3. for each 7r in Aut(F) do Sum: Sum + fix(^'); 
4. Sum:= Sum/lAut(F)I. 

"Sum" is the number of nonisomorphic STS(19) obtained from the one-factoriza- 
tion F. 

We present the results of our enumeration in Section 3. We note that the methods 
we have used are very similar to Deherder [1]; the main simplification is the use of 
Burnside's lemma. 

3. Enumeration of STS(19) Containing a Sub-STS(9). As mentioned, the 396 
one-factorizations of ten points were enumerated in [2]. We used a computer to find 
the automorphism group of each, and the cycle type of each automorphism. We 
record our results in Table 3, according to the size of the automorphism groups of 
the one-factorizations and the number of nonisomorphic designs that result. (More 
detailed information is presented in Table A in the Appendix). Hence, we have 

THEOREM 3.1. The number of nonisomorphic STS(19) that contain a sub-STS(9) is 
exactly 284457. 

TABLE 3 
Enumeration of STS(19) containing sub-STS(9) 

Group order #one-factorizations nonisomorphic designs Total 

1 298 298 840 250320 

2 69 40 432 
7 424 29488 

22 420 

3 5 4 294 1460 
1 284 

4 7 3 224 
2 214 1524 
2 212 

6 6 1 154 
4 152 906 
1 144 

8 3 3 108 324 

9 1 1 98 98 

12 2 2 84 168 

16 1 1 61 61 

18 1 1 56 56 

40 1 1 24 24 

54 1 1 19 19 

432 1 1 9 9 
396 284457 
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We remark that Deherder enumerated all the designs resulting from the 389 
one-factorizations with automorphism groups of order at most 9. Our results agree 
with his, except for one small error. From one of the one-factorizations (#36 on 
Gelling's list), 144 nonisomorphic STS(19) result, and not 152, as claimed in [1]. We 
have adjusted the bounds claimed in the introduction downward by 8, to correct this 
error. 

4. Sub-STS(7) and Sub-One-Factorizations of Order 4. The second question we 
investigate is the enumeration of sub-STS(7) in the 284457 STS(19) which contain a 
sub-STS(9). First, it is not difficult to see that, if an STS(19) contains both a 
sub-STS(9) and a sub-STS(7), then these subdesigns intersect in a block of the 
design. The sub-STS(7) contains four points i, j, k, 1 not in the sub-STS(9), and 
three points m', n', p', which occur in a block of the sub-STS(9). In the one-factori- 
zation F, {i, j} and {k, 1 ) occur in a one-factor, as do {i, k} and ( j,1), and {i, 1} 
and { j, k } (these three one-factors are, in some order, Pm, Pn, and Pp). Such a 
configuration is called a sub-one-factorization of order 4, on the four points i, j, k, 
1. We determined, by computer, the occurrences of sub-one-factorizations of order 4 
in the 396 one-factorizations of order 10. This information is presented in Table 4. 

TABLE 4 
Sub-one-factorizations of order 4 

# sub-one-factorizations of order 4 # one-factorizations of order 10 

0 278 
1 81 
2 24 
3 5 
4 5 
6 2 

12 1 
396 

Let G be a sub-one-factorization of order 4 in F (a one-factorization of order 10). 
Define B(G) = {i': G meets Pi in a one-factor). Then an STS(19), F + S, has a 
sub-STS(7) containing the points of G if and only if B(G) is a block of S. 

For a one-factorization F, we define Conf(F) = { B(G): G is a sub-one-factoriza- 
tion of order 4 in F). We call Conf(F) the configuration induced by F. Conf(F) is a 
set of three-subsets of { i': 1 < i < 9). Also, it is not difficult to check that no pair of 
points can occur in more than one three-subset of a particular configuration. An 
STS(19), F + S, contains precisely IConf(F) n SI sub-STS(7)s. 

We want to count nonisomorphic STS(19). As before, we have the symmetric 
group S9 acting on the 840 distinct STS(9) on points {i': 1 < i < 9), and Aut(F) 
induces an equivalence relation = on this set of STS(9). Since IConf(F) n SI is 
constant within equivalence classes, we could choose one STS(9) from each equiva- 
lence class, and determine IConf(F) n SI to count the sub-STS(7)s. But again, we can 
use Burnside's lemma to avoid counting the equivalence classes. 

For a configuration C = Conf(F), an automorphism v in G = Aut(F), and an 
integer i such that 0 < i < ICl, define fix(C, i, 7T) to be the number of STS(9) S such 
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that: 
(1) IC n SI = i, and 
(2) S is fixed by 7T. 

Then, the number of nonisomorphic STS(19) F + S which contain exactly i sub- 
STS(7) is precisely Ev E G fix(C, i, r)/IGI. 

So, we can do our enumeration, provided we can find the relevant numbers 
fix(C, i, 7T). In general, these quantities depend on the cycle type of 7T, and the 
structure of C. Note that we must have C' = C, since 7r E Aut(F). Hence, there are 
usually not too many possibilities to consider. We pursue this in the next section. 

5. Enumeration of Sub-STS(7). First, we observe that the 278 one-factorizations 
with no sub-one-factorizations of order 4 cannot give rise to any STS(19) with a 
sub-STS(7). So, we begin with the 81 one-factorizations F that contain a unique 
sub-one-factorization of order 4. Each such F has Conf(F) consisting of one block of 
size three. 

So, we first want to determine the numbers fix({ a', b', c'}, i, v), where Vr has one 
of the 9 cycle types in Table 2 (i.e., r is an automorphism of some STS(9)), r fixes 
{ a', b', c'}, and i = 0,. These numbers are not too difficult to calculate. For 
example, consider the cycle type 3161, and suppose r = (123)(456789). Then we 
must have (a, b, c} = (1,2, 3). From Table 2, we see that there are three STS(9)s 
which are fixed by v, and it is easy to check that all three contain the block 
(1', 2', 3'). Hence, fix({l', 2', 3'), 1, r) = 3 and fix({l', 2', 3'), 0, r) = 0. 

The remaining fix numbers can be calculated without difficulty. We present them 
in Table 5. For each cycle type, we give a particular r with that cycle type. We then 
list all possible blocks B that could be fixed by v, and the fix numbers for each. For 
convenience, we will henceforth omit the prime (') markings when discussing 
configurations. 

TABLE 5 
Fix numbers for configurations having one block 

Cycle type 7r B fix(B,1, 7) fix(B,O,7T) 

1181 (1)(23456789) none 
3161 (123)(456789) .{1, 2,3} 3 0 

112161 (1)(23)(456789) {1, 2, 3} 2 0 
1142 (1)(2345)(6789) none 

33 (123)(456)(789) {1, 2, 3} 3 18 
f{4,5,6} 3 18 
f{7,8,9} 3 18 

1332 (1)(2)(3)(456)(789) {1, 2,3} 6 0 
f{4,5,6} 6 0 
f{7,8,9} 6 0 

1124 (1)(23)(45)(67)(89) { 1, 2, 3} 8 0 
f{1, 4,5} 8 0 
f{1,6,7} 8 0 
f{1,8,9} 8 0 

1323 (1)(2)(3)(45)(67)(89) {1, 2,3} 24 0 
{1, 4, 5}, etc. 8 16 

19 (1)(2)(3)(4)(5)(6)(7)(8)(9) {1, 2, 3}, etc. 120 720 
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Of the 81 one-factorizations which contain a unique sub-one-factorization of order 
4, 68 have trivial automorphism groups, and hence each of these gives rise to 120 
STS(19) which contain a sub-STS(7), for a total of 68 x 120 = 8160. Ten of the 
remaining 13 one-factorizations have groups of order 2; 8 of these produce 72 
designs (each) with subdesigns of order 7, and the remaining 2 each yield 64. The 3 
remaining one-factorizations have groups of order 6, and each contribute 26 of these 
designs. So the 13 one-factorizations with nontrivial automorphism groups produce a 
total of 8 X 72 + 2 x 64 + 3 x 26 = 782 STS(19) containing a sub-STS(7). (For 
details, see Tables B and C in the Appendix). So, we have 

THEOREM 5.1. The 81 one-factorizations which contain precisely one sub-one-factori- 
zation of order 4 produce exactly 8942 STS(19) which contain a sub-STS(9) and a 
sub-STS(7). 

We now consider the 24 one-factorizations of order 10 that contain exactly two 
sub-one-factorizations of order 4. First, we remark that these all have configurations 
isomorphic to {{ a, b, c}, (a, d, e }}. This is because any configuration which con- 
tains two nonintersecting blocks must in fact contain a third block disjoint from the 
first two. 

Examining the automorphisms which occur, we find that there are only four 
nonisomorphic possibilities. These are summarized in Table 6. 

TABLE 6 
Fix numbers for configurations having two blocks 

Cycle type 7T representative configuration fix numbers 

1323 (1)(2)(3)(45)(67)(89) {{1, 2, 3}, {1, 4,5}}, fix(C, 2, 7T) = 8 
etc. fix(C, 1, 7T) = 16 

fix(C, 0r ) = 0 

{{1, 4,6}, {1, 5,7}}, fix(C, 2, 7T) = 4 

etc. fix(C, 1, 7T) = 0 
fix(C,0, ) = 20 

1124 (1)(23)(45)(67)(89) {{1, 2,3}, {1, 4,5}}, fix(C, 2, 7T) = 8 
etc. fix(C, 1, 7T) = 0 

fix(C, 0, 7T) = 0 

19 (1)(2)(3)(4)(5)(6)(7)(8)(9) {{1, 2,3}, {1, 4,5}}, fix(C, 2, 7T) = 24 
etc. fix(C, 1, 7T) = 192 

fix(C, 0, 7T) = 624 

The nine automorphism-free one-factorizations which contain two sub-one-fac- 
torizations of order 4 are listed in Table B. Each of these gives rise to 24 STS(19) 
containing two sub-STS(7)s and 192 STS(19) containing one sub-STS(7). The 
remaining 15 one-factorizations have automorphism groups of order 2 or 6. The 
sub-STS(7)s arising from them are presented in Table C. Summarizing these, we 
have 

THEOREM 5.2. The 24 subfactorizations which contain exactly two sub-one-factoriza- 
tions of order 4 give rise to 444 STS(19) which contain a sub-STS(9) and two 
sub-STS(7)s, and 3176 STS(19) which contain a sub-STS(9) and one sub-STS(7). 
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There are five one-factorizations that contain exactly three sub-one-factorizations 
of order 4. One of these (#20) has a configuration consisting of three mutually 
intersecting three-subsets, and the other four have configurations consisting of three 
mutually disjoint three-subsets. The one-factorization #20 has a trivial automor- 
phism group. The fix numbers are easily calculated, and we obtain the results shown 
in Table C. 

The four one-factorizations that have three disjoint three-subsets for their config- 
urations have automorphism groups of orders 3, 6, 18, and 54. There are several fix 
numbers which must be calculated. These are presented in Table 7. We note that all 
the relevant fix numbers fix(C, 2, r) = 0, since any STS(9) containing two specified 
disjoint blocks must also contain a third block disjoint from the first two. Also, we 
should point out that for some cycle types in Table 7, there could (conceivably) be 
different (nonisomorphic) ways in which the specified vr intersects the configuration 
C. For example, if 7r = (123)(456)(789), then there are two nonisomorphic possibili- 
ties for C: ((1,2,3), (4,5,6), (7,8,9)) and ((1,4,7), (2,5,8), (3,6,9}). Only the 
first of these occurs, so we do not calculate fix numbers for the second possibility. 

TABLE 7 
Fix numbers for configurations consisting of 

three disjoint blocks 

Cycle type 7r representative configuration fix numbers 

3161 (123)(456789) 123,468,279, fix(C, 3, T) = 3 
etc. fix(C,1,7T)=O 

fix(C, O, 7T) = 0 

112161 (1)(23)(456789) 123,468,579, fix(C, 3, g) = 2 
etc. fix(C, 1, 7T) = O 

fix(C, O, 7T) = 0 

33 (123)(456)(789) 123,456,789, fix(C, 3, T) = 3 
etc. fix(C, 1, 7T) = O 

fix(C,O, 7) = 18 
13 32 (1)(2)(3)(456)(789) 123,456,789, fix(C, 3, 7) = 6 

etc. fix(C, 1, 7T) = 0 

fix(C, O. 7r) = 0 

112~ 4(1)(23)(45)(67)(89) 123,468,579, fix(C, 3, 7) = 2 
etc. fix(C, 1, 7) = 6 

fix(C,0, O ) = 0 

1323 (1)(2)(3)(45)(67)(89) 123,468,579 fix(C, 3, 7) = 6 
etc. fix(C, 1, 7T) = 18 

fix(C, O, 7T) = 0 

19 (1)(2)(3)(4)(5)(6)(7)(8)(9) 123,456,789, fix(C, 3, 7) = 12 
etc. fix(C, 1, 7) = 324 

fix(C,0, ) = 504 

There remain eight one-factorizations to consider. Five of these contain 4 sub- 
one-factorizations of order 4, two contain 6, and one contains 12. The configuration 
of this last one-factorization is in fact an STS(9), and the automorphism group is 
Aut(STS(9)). So, the determination of IConf(F) n SI for various STS(9), S, is 
equivalent to counting STS(9) which intersect a fixed STS(9) (namely, Conf(F)) in a 



STEINER TRIPLE SYSTEMS OF ORDER 19 725 

specified number of blocks, under the action of Aut(STS(9)). These numbers were 
calculated in [3]. We obtain the numbers in Table C. 

The seven one-factorizations having configurations of size 4 or 6 were dealt with 
as follows. In order to minimize the possibility of error in calculating the fix 
numbers, we simply used the computer. For each automorphism 'r, we generated all 
840 STS(9) and counted how many were fixed by r. For many of these, we also 
calculated the fix numbers by hand, and the results agreed in all cases. We obtained 
the results of Table C. 

Summarizing the STS(19) obtained from the one-factorizations with configura- 
tions of size at least three, we have 

THEOREM 5.3. From the 13 one-factorizations with configurations of size at least 3, 
we obtain Ni STS(19) which contain a sub-STS(9) and i sub-STS(7), where N1 = 682, 
N2 = 197, N3 = 45, N4 = 37, N6 = 5, and N12 = 1. 

The overall distribution of sub-STS(7) in the STS(19) was presented in Table 1 in 
the Introduction. We have 

THEOREM 5.4. Of the 284457 nonisomorphic STS(19) which contain a sub-STS(9), 
exactly 13529 contain at least one sub-STS(7). 

As a final remark, we note that it would be possible to determine the automor- 
phism groups of the 284457 STS(19), using similar techniques. 

Acknowledgment. We would like to thank Alex Rosa for bringing the work of 
Deherder to our attention, and for many useful comments and suggestions. 

APPENDIX 

TABLE A 
One-factorizations with nontrivial automorphism groups 

One-factorization number group order # STS(l9) group generators 
(action on one-factors) 

1 432 9 (1)(28653974) 

(1)(6)(7)(285)(394) 
(132)(487)(569) 

2 12 84 (1)(89)(274365) 

(1)(26)(37)(45)(89) 
3 6 154 (1)(2)(3)(45)(68)(79) 

(1)(4)(5)(297)(386) 
4 2 432 (1)(8)(9)(27)(36)(45) 
5 16 61 (1)(29473856) 

(1)(6)(7)(24)(35)(89) 
6 2 432 (1)(2)(3)(45)(68)(79) 
7 6 152 (132)(487569) 
8 4 224 (1)(2)(3)(49)(58)(67) 

(3)(4)(9)(12)(56)(78) 
9 4 224 (1)(2)(3)(46)(57)(89) 

(2)(4)(6)(13)(59)(78) 
10 2 432 (1)(2)(3)(45)(68)(79) 
11 18 56 (123)(497685) 

(4)(7)(8)(123)(596) 

(continues) 
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(continued) 

One-factorization number group order # STS(l9) group generators 
(action on one-factors) 

12 12 84 (154)(298367) 
(1)(23)(45)(67)(89) 

13 6 152 (132)(478965) 
17 2 432 (1)(4)(8)(27)(36)(59) 
18 2 432 (1)(2)(3)(49)(58)(67) 
19 2 432 (1)(2)(3)(45)(68)(79) 
21 2 432 (1)(2)(3)(45)(68)(79) 
22 8 108 (1)(29385746) 
23 2 432 (1)(2)(3)(45)(68)(79) 
24 2 432 (1)(2)(3)(45)(68)(79) 
36 6 144 (1)(23)(497586) 
38 3 284 (4)(7)(8)(132)(596) 
44 2 432 (1)(8)(9)(23)(47)(56) 
49 4 212 (1)(2)(5)(6)(8)(34)(79) 

(1)(3)(4)(7)(9)(25)(68) 
51 2 432 (1)(2)(3)(45)(68)(79) 
53 2 432 (1)(4)(9)(26)(35)(78) 
58 2 432 (1)(2)(3)(45)(68)(79) 
61 2 432 (1)(2)(3)(48)(59)(67) 
66 2 420 (1)(2)(3)(6)(9)(45)(78) 
92 2 432 (1)(4)(7)(29)(38)(56) 
95 2 432 (1)(2)(3)(45)(68)(79) 
98 2 432 (1)(2)(3)(45)(68)(79) 

100 2 432 (1)(4)(6)(29)(38)(57) 
101 2 432 (1)(2)(6)(39)(48)(57) 
105 2 432 (2)(5)(7)(16)(38)(49) 
114 2 432 (1)(3)(6)(24)(59)(78) 
125 2 420 (2)(3)(4)(6)(8)(19)(57) 
132 6 152 (132)(478596) 
135 2 432 (1)(2)(3)(45)(68)(79) 
136 2 432 (1)(2)(3)(49)(58)(67) 
147 2 420 (1)(3)(5)(7)(9)(24)(68) 
148 2 432 (1)(2)(3)(49)(58)(67) 
150 4 214 (1)(2736)(4958) 
153 2 420 (1)(2)(3)(6)(9)(45)(78) 
165 2 420 (1)(2)(5)(6)(7)(34)(89) 
182 2 420 (1)(2)(5)(6)(7)(34)(89) 
192 2 432 (1)(2)(6)(39)(48)(57) 
193 2 420 (1)(2)(3)(6)(8)(45)(79) 
194 2 432 (1)(2)(8)(36)(47)(59) 
195 2 432 (2)(3)(9)(16)(47)(58) 
199 2 420 (1)(2)(3)(7)(9)(48)(56) 
201 2 420 (1)(2)(3)(4)(6)(59)(78) 
202 2 432 (1)(2)(7)(35)(46)(89) 
203 2 432 (1)(2)(4)(35)(67)(89) 
204 2 432 (1)(2)(4)(35)(67)(89) 
214 2 424 (1)(23)(45)(67)(89) 
234 4 224 (1)(2)(3)(45)(68)(79) 

(1)(4)(5)(23)(69)(78) 
243 2 432 (2)(7)(9)(15)(34)(68) 
254 2 424 (8)(16)(27)(35)(49) 
259 2 420 (1)(3)(4)(8)(9)(25)(67) 
269 2 420 (1)(3)(4)(8)(9)(25)(67) 
285 2 420 (1)(2)(3)(6)(9)(45)(78) 
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One-factorization number group order X STS(l9) group generators 
(action on one-factors) 

290 54 19 (186345279) 

(7)(48)(162539) 
292 2 420 (1)(2)(5)(7)(8)(34)(69) 
297 2 420 (2)(4)(7)(8)(9)(15)(36) 
299 2 420 (1)(2)(3)(6)(7)(49)(58) 
305 2 432 (1)(3)(8)(24)(56)(79) 
315 2 432 (1)(2)(8)(36)(47)(59) 
316 2 432 (1)(3)(6)(24)(58)(79) 
324 2 424 (1)(23)(45)(67)(89) 
328 8 108 (1)(27385946) 
329 4 214 (1)(2938)(4756) 
330 8 108 (1)(2938)(4756) 

(1)(4)(5)(6)(7)(23)(89) 
331 2 432 (2)(7)(9)(15)(38)(46) 
332 2 432 (3)(5)(9)(18)(24)(67) 
347 2 424 (1)(23)(47)(59)(68) 
355 2 420 (1)(2)(3)(6)(9)(45)(78) 
360 2 432 (2)(3)(9)(16)(45)(78) 
362 3 294 (132)(476)(589) 
363 3 294 (184)(265)(397) 
364 2 420 (1)(2)(3)(6)(8)(45)(79) 
367 2 432 (2)(3)(9)(16)(47)(58) 
374 2 432 (1)(2)(4)(36)(59)(78) 
375 2 424 (5)(16)(28)(39)(47) 
376 2 420 (1)(2)(3)(6)(9)(48)(57) 
378 2 424 (1)(25)(34)(69)(78) 
380 6 152 (132)(498576) 
381 3 294 (172)(395)(468) 
382 3 294 (182)(375)(496) 
388 2 420 (2)(3)(5)(7)(9)(16)(48) 
389 2 420 (1)(2)(3)(6)(8)(47)(59) 
390 2 420 (4)(5)(6)(8)(9)(13)(27) 
391 2 420 (1)(2)(3)(7)(9)(48)(56) 
392 2 432 (2)(3)(9)(16)(45)(78) 
394 2 424 (1)(23)(45)(67)(89) 
395 4 212 (1)(2)(3)(6)(7)(45)(89) 

(1)(4)(5)(8)(9)(23)(67) 
396 40 24 (3)(1276)(4859) 

(45)(89)(16327) 

TABLE B 
A utomorphism-free one-factorizations 

containing one or two sub-one-factorizations of order 4 

One sub-one-factorization 
14,27,30,32,34,35,37,40,41,42,43,45,47,50,55,62,63,64,65,67,69,71,73, 

77,81,84,87,88,94,96,99,102,103,104,106,109,113,115,117,120,122,123, 
124,128,130,133,137,140,155,157,159,162,181,185,196,197,205,218,229, 

247,252,256,260,276,283,301,308,343 

Two sub-one-factorizations 
15,16,25,26,29,48,52,164,255 
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TABLE C 

Other one-factorizations which contain at least one 

sub-one-factorization of order 4 

one-factorization Configuration # STS(l9) which contain i sub-STS(7) 
number 

i= 1 2 3 4 6 12 

1 123,145,167,189 1 1 2 1 1 1 
246,258,279,349 
357,368,478,569 

2 123,145,167,189 30 15 4 3 2 
246,357 

3 123,145,167,189 54 28 6 4 2 
279,368 

4 123,145,167,189 136 50 0 6 
5 123,145,167,189 20 7 0 16 
6 123,145 104 16 
7 123,145,279,368 56 12 2 2 
8 123,349 56 12 
9 123,189,246,357 85 21 3 3 
10 123,345 104 16 
11 123,569,478 21 0 5 
12 123,145,569,478 31 9 2 2 
13 123 26 
17 123,167 96 14 
18 123,349 104 16 
19 123,145 104 16 
20 123,189,368 78 54 6 
21 123,145 104 16 
23 123,145 104 16 
24 123 72 
36 123,478,569 55 0 5 
38 123,478,569 108 0 8 
44 123,189 104 16 
51 123 72 
58 123,145 104 16 
61 123 72 
95 123,145 104 16 
98 123,145 104 16 
100 123,189 96 14 
132 123 26 
135 123,145 104 16 
136 123 72 
148 123 72 
234 123,145 56 12 
243 279 72 
254 358 64 
290 123,569,478 7 0 2 
331 279 72 
332 359 72 
347 123 64 
380 123 26 
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